初中数学教研工作计划怎么写?( 二 )


(2)课型的基本流程
基本流程:
A 。关注概念的实际背景与形成过程;
B 。以准确的语言明确揭示其本质,确认概念;
C 。突出概念的有关特征,理解概念;
D 。挖掘与已有概念的关系,发展概念;
E 。运用正反例的变式突出概念的内涵、外延,巩固概念;
F 。小结反思,课堂检测,提升概念 。
*命题课的教学目的及流程
(1)目的
该课型应体现学生的学习活动是在进行“命题学习” 。通过学习,进一步了解概念与概念之间的内在联系及其演绎规律,掌握几个概念之间所存在的某些定律或联系法则 。公式、定理课应让学生准确地掌握命题的条件部分和结论部分,了解公式、定理中诸条件的性质和作用,掌握公式变形的各种形式 。
(2)课型的基本流程:
A 。数学命题的引入;
B 。数学命题的证明;
C 。数学命题的应用;
D 。命题的引申与拓广;
E 。小结、归纳、升华
(3)基本要求:
A 。数学命题的引入:采用引导发现式:①提出问题;②探究猜测:提供系列的实例或素材,让学生通过实验、操作和思考提出猜想;修改、完善学生的猜想,形成末加证明的命题 。这种模式适用于几何定理的教学或存在规律的代数运算法则;
B 。数学命题的证明:一要明确给出命题的条件和结论;而要用综合分析法探索证明命题的'思路;三要完成证明,并用文字语言、图形语言、符号语言规范表述,说明其等价说法;四要揭示证明中运用的数学思想、方法(有的命题证明本身就是一种数学方法);五要明确命题的条件、结论以及适用范围 。
C 。数学命题的应用:一要强调命题的条件和使用范围;二要给出命题所解决问题的基本类型;三要通过变式练习,正反例纠正常见错误,加强命题的灵活应用;
D 。命题进行引申和拓广:通过开放性题对命题进行引申和拓广,渗透研究问题的方法;
E 。小结、归纳:一要归纳出命题的关键,而要总结出主要的数学思想和方法 。
(3)命题教学应注意的问题:
A 。何种方式引入,要根据具体的教学内容确定,不可牵强;
B 。进行几何命题教学时要注意数形结合,数学公式的教学要注意其几何背景 。
*复习课的教学流程
“归纳——诊断——示例——提高——总结” 。
这种模式就是通过对知识要点的归纳,形成认知体系;通过诊断练习,发现问题、解决问题;通过典型例题示范,领悟思想方法;通过综合练习,培养运用知识的能力 。
*讲评课的基本流程
(一)明确试卷讲评课的教学目的
概括起来,试卷讲评课要达到以下四个目的:
1纠正错误———纠正学生答题中的各种错误,掌握正确解法 。