三角函数的周期怎么求


三角函数的周期怎么求

文章插图
正弦、余弦函数的周期为2π,正切函数周期为π先把所求的三角函数化成我们比较熟悉的形式,可以直接代入以下公式 。
比如说可化成
y=sin(ωx+θ)+K,
则T=2π/ω;
y=cos(ωx+θ)+K,
则T=2π/ω;
y=tan(ωx+θ)+K,
则T=π/ω;
(其中ω , θ,ω均为实数)
f(x)=sin(ωx+φ)
T=2π/|ω|f(x)
=cos(ωx+φ)T
=2π/|ω|f(x)
=tan(ωx+φ)T
=π/|ω|f(x)
=cot(ωx+φ)T
=π/|ω|f(x)
=sec(ωx+φ)T
=2π/|ω|f(x)
=csc(ωx+φ)T
=2π/|ω| 。
扩展资料
三角函数的周期通式的表达式:
正弦三角函数的通式:y=Asin(wx+t);余弦三角函数的通式:y=Acos(wx+t);
正切三角函数的通式:y=Atan(wx+t);余切三角函数的通式:y=Actg(wx+t) 。
在w>0的条件下:A:表示三角函数的振幅;三角函数的周期T=2π/ω;三角函数的频率f=1/T:
wx+t表示三角函数的相位;t表示三角函数的初相位 。
正切:在Rt△ABC中,如果锐角A确定,那么角A的对边与邻边的比值随之确定,这个比叫做角A的正切 , 记作tanA 。
即:tanA=∠A的对边/∠A的邻边 。
正弦函数 sinθ=y/r
余弦函数 cosθ=x/r
正切函数 tanθ=y/x
余切函数 cotθ=x/y
正割函数 secθ=r/x
余割函数 cscθ=r/y
扩展资料:

正切函数图像的性质:
定义域:{x|x≠(π/2)+kπ,k∈Z}
值域:R
奇偶性:有 , 为奇函数
周期性:有
最小正周期:kπ,k∈Z
单调性:有
单调增区间:(-π/2+kπ,+π/2+kπ),k∈Z
单调减区间:无
公式一:
设α为任意角 , 终边相同的角的同一三角函数的值相等:tan(2kπ+α)=tanα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:tan(π+α)=tanα
公式三:
任意角α与 -α的三角函数值之间的关系: tan(-α)=-tanα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:tan(π-α)=-tanα
公式五:
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:tan(2π-α)=-tanα
参考资料来源:百度百科——正切
1、定义域:{x|x≠(π/2)+kπ,k∈Z} 。
2、值域:实数集R 。
3、奇偶性:奇函数 。
4、单调性:在区间(-π/2+kπ,π/2+kπ),(k∈Z)上是增函数 。
5、周期性:最小正周期π(可用T=π/|ω|来求) 。